学完了财务报表,该卷起袖子干点什么了。虽然由于具体情况的限制,我们只能进行大致估价。不过,只要做到估价尽量保守,安全边际尽量做得远一点,大致的估价也会产生某种指导意义的。
机会成本:天下没有免费的午餐
俗话说:天下没有免费的午餐。这句话到底是什么意思呢?根据不同语境可以给出不同的解释,但在经济学里它特指机会成本。成本很好理解,可加上“机会”二字理解起来就有一些难度了。
为了更好地理解,我们还是用例子来说明。比如,你大学刚刚毕业,有两份工作摆在面前:A工作薪酬每月3000元,B工作薪酬每月3500元。你会选哪一份呢?如果单从利益最大化的角度来考虑,肯定选B工作,因为选B比选A可以多赚500元。那选择做B工作能赚多少钱呢?
如果回答赚3500元就错了,你只赚了500元。这是因为做A工作也可以得到3000元的薪酬,而你选择了B。也就是说,你放弃了A工作这个机会,而这部分成本就叫作机会成本。做任何一件事都会放弃做其他事的机会,也就是增加了做其他的机会成本。这就是“天下没有免费的午餐”的道理。
如果这样解释,理解起来还有一定的难度,那么我们再来看下面这个例子。比如,一个朋友找你合伙做生意,他告诉你投入100元一年可以赚1元钱。这个生意你做不做呢?现在长期国债的利率为5.32%。把这100元存进银行,每年的收益是5.32元,比投资企业还要多,肯定这个投资是不合适的。
如果这个朋友说,你投100元一年可以赚10元钱,你会不会投呢?在经过反复考查后,你发现风险很少,愿意投资。那么你赚了多少钱呢?通过上面的一番学习,你已经知道了,赚到的钱肯定不是10元,而是4.68元。还是那句话,我什么也不干,就让钱在银行里躺着,也能赚5.32元。我干了这个只不过是多赚了4.68元而已。
既然如此,那我们是买国债,还是买股票呢?如果企业不能给我们每年高于5.32%的增长率,就还不如买国债呢?为什么我们还要坚持买股票呢?不就是因为预期买股票可以得到比买国债更多的收益吗?如果这个大前提都不存在了,那么买股票还有什么意义呢?也正因为如此,我们在购买股票之前先要了解企业的收益率。它到底到底能不能超过长期国债收益率?如果不能,就可以先暂时把它放到一边。这样,一批暂时不适合投资的企业就筛选出来了。
溢价:你给的比我要的还多吗
投资企业比购买长期国债每年多出来的那部分收益就是风险收益。我们买股票就是冒着风险来的。风险收益越多,说明投资越正确。找人合伙做生意,当然是赚得越多越好,越高于长期国债收益越好。
我们继续沿用上一节朋友做生意的例子。朋友做生意,让你投资100元,至于赚多少他也不确定,但是你觉得前景确实不错,所以决定试一试。这时,你所要求的收益只要达到长期国债的收益就可以。也就是说,投资100元,每年能赚5.32元,你就很满足了。
事实上,企业一年中赚了10元钱,比同期长期国债收益多了4.68元。这4.68元是你真正赚到的钱。这是从收益的角度来看,现在我们需要从另一个角度来分析这件事。
按照最初的设想,企业的总资产是100元,如果一年之后变成了105.32元,那么总资产增加了没有?账面上是增加了,实际上是没有,因为即使你什么也不****也会变成105.32元。而一年后赚了10元后,实际增加了4.68元,这是企业的价值所在。它的价值就是可以创造比我们要的还要多的价值。如此说来,这项生意值得一做。
如果你想出售的话,这家企业值多少钱呢?我们必须有一个计算的公式。
【公式说】
价格=账面价值+溢价
在这个公式中,决定价格的变量有两个:账面价值和溢价。什么是账面价值呢?所谓账面价值就是企业的净资产。因为企业有它的价值,能创造出来比我们最低要求还多的价值,所以它是一个炼金的机器,只要把一块金子放进去,它早晚会变成两块金子。如果出售的话,肯定不能以一块金子的价格卖出去,还得算上以后能出产的金子。所以预期增加的部分就叫作溢价。
如果没有意外的话,一般的假设是企业可以长期生存下去,那么如何计算溢价就成了我们比较棘手的问题了。按照现行长期国债的标准,我们要求最低的回报率是5.32%,接着可能要求第一年回报10%,第二年回报13%,第三年回报15%……可是,离现在越远的事我们越难估计,同时它还会受到收益递减规律的制约,不可能一直涨到天上去。
尽管如此,我们总归能明白一件事,就是价格等于账面价值加上溢价,而溢价并不是单单一年的溢价,而是理论上永久的溢价。那么价格公式就变成了,账面价值+第一年溢价+第二年溢价+第三年溢价+……+第N年溢价。这样就可以解释为什么有的企业每股账面价值是1元,预期溢价是0.2元,它却能卖到几十块钱。因为后面还有第N年溢价的问题。
如果企业能创造的溢价越高,说明它创造价值的能力就越大,市净率就越大。
【公式说】市净率=市场价格/账面价值
对于市净率而言,比值越大就说溢价越多,比值越小就说明溢价越少。还有一种情况,如果比值小于1,那就说明市场价格要低于账面价值,也就是说溢价是负的。当溢价为负值时,企业不能不能创造出比我们最低要求还多的价值,还要不停地吞噬原有价值。这样一来,该企业的投资情况就不容乐观了。所以,对于身为投资者的我们来讲,排除市净率小于1的企业就是下一步要做的。
折现:这一秒的钱值钱,还是下一秒的钱值钱
人们常说现在的钱越来越不值钱了,这说的是通货膨胀的问题,和我们所要讲的有那么一点关系。随着经济不断发展,流通速度越来越快,需要用于流通的钱就会显得越来越少。所以,当年明月在《明朝那些事儿》里面说,有人说明朝灭亡的原因,有一个就是因为没有钱,其实不是真的没有钱,而是缺少流通。大明王朝使用的是银本位货币制度,那么适度的通货膨胀是必然的,钱越来越多,购买力也会越来越低,钱越来越不值钱了。所以,这一秒的钱永远比下一秒的钱值钱。
这里还有一个问题,那就是如果你今年欠我100元,明年就还100元,这样做是非常不科学的。因为如果我不把钱借给你,就让它在银行里“睡大觉”,一年之后还能得到105.32元。所以,明年你至少要还我105.32元。要是只还100元,借款的价值就至少减少了5%。
为什么要讨论钱越来越不值钱的问题呢?因为我们需要了解折现的问题。打个比方。如果我现在有100元,存在银行明年变成105.32元,取出来连本带息再存一年,变成110.92元。那我反过来问,明年我想得到105.32元,我现在应该付出多少钱?反推着计算回来就是现在得拿出100元。如果我再问,每年年利率为5.32%,我两年后想得到110.92元,我现在得付多少钱?结果还是现在拿出100元。这种将未来的现金按照一定利率折成现在的钱的方式,就叫作折现。
【公式说】 excel里的折现公式为:
pv(rate,nper,pmt,fv)
这里的pv就是折现值,rate是折现率,nper为投资期,pmt为每期所支付的现金,fv为终值,也就是未来要实现的现金数值。
我们设定年利率为5.32%,时限为1年,期间并不向外取钱,一年后想要得到的现金为100元。输入的公式为“=pv(5.32%,1,0,100)”,计算出来的结果为“-94.95”元。为什么是负值?因为要从我们钱包里拿出来,相对我们而言就是负值了。从公式可以得出,一年时间年利率为5.32%,最后拿到100元,我们现在需要支付94.95元。这就是折现。
此外,刘顺仁先生在《财报就像一本故事书》中举了一个更有意思、也更贴近生活的例子。比如你目前的工资是每年10万元。现在有个机会可以去读一个学位,学费20万元。有了这个学位,年薪将增加到15万元。如果你现在35岁,60岁退休,还可以在工作25年。那么这个学位到底是读还是不读好呢?
现在就让我们抛开理想及对知识渴求等人为因素,单从经济效益这个角度来分析一下。如果有了这个学位,以工作25年计,年薪每年多了5万,25年就是125万。这个结果确实比20万学费要高得多。但是,我们很清楚125万是未来的收益,而且是理论上的数字,这一秒的钱永远要比下一秒的钱更值钱。所以,我们还需要算一下折现价值。
一年后增加5万,按现在的年利率5.32%来说,也就是现在的4.75万,以此类推,第二年的5万相于现在的4.51万。那25年后的5万相当于现在的1.37万,所有这25年多出来的125万未来的现金值,全部折现到现在的话是68.26万(将每年的折现值相加)。
从经济价值这个角度来说,一次性支付20万元学费之后可以得到当下折现后的68.26万元。以现在的标准来看,一下子就赚了48.26万元,还是非常划算的。折现很残酷,25年后的5万,按很低的利率折到现在也就只有1.37万了。为什么要说折现?还是因为溢价的问题。
溢价是未来实现的,而我们需要现在为它埋单,但是现在的钱比未来的钱值钱,所以我们需要将它未来的溢价进行折现。
估值定价:它值多少钱
企业的价格估值模型中有两个变量:一个是账面价值,另一个就是溢价的问题。企业每年的账面价值都是不同的,相应地,随着运营状况的起伏,溢价的标准也会有所变动。
不过,这个模型毕竟只是对企业定价的简单计算。在此之前,我们还需要为企业定性。如果一家企业资产结构稳定,并且没有任何负债风险,那基本上就可以将其定位为投资环境的企业,现在要做的就只是给它一个合理的价格。由于给定了前提条件,所以它的账面价值基本上可以不用管,只看它今后若干年内能带给我们多少溢价。那么,我们只对溢价部分埋单。
就像一台炼金的机器,它明年能出10克黄金,假设根据5.32%的折现率,我今年只需要付9.49克黄金就可以了,那这台机器对于我来说真实的价值就是9.49克黄金。如果这台机器可以存在两年,每年产出10克黄金,需要支付18.51克黄金,此时这台机器对于我来说真实的价值为18.51克黄金。