To define and divide one need not know the whole of existence. Yet some hold it impossible to know the differentiae distinguishing each thing from every single other thing without knowing every single other thing; and one cannot, they say, know each thing without knowing its differentiae, since everything is identical with that from which it does not differ, and other than that from which it differs. Now first of all this is a fallacy: not every differentia precludes identity, since many differentiae inhere in things specifically identical, though not in the substance of these nor essentially.
Secondly, when one has taken one's differing pair of opposites and assumed that the two sides exhaust the genus, and that the subject one seeks to define is present in one or other of them, and one has further verified its presence in one of them; then it does not matter whether or not one knows all the other subjects of which the differentiae are also predicated. For it is obvious that when by this process one reaches subjects incapable of further differentiation one will possess the formula defining the substance. Moreover, to postulate that the division exhausts the genus is not illegitimate if the opposites exclude a middle; since if it is the differentia of that genus, anything contained in the genus must lie on one of the two sides.
In establishing a definition by division one should keep three objects in view: (1) the admission only of elements in the definable form, (2) the arrangement of these in the right order, (3) the omission of no such elements. The first is feasible because one can establish genus and differentia through the topic of the genus, just as one can conclude the inherence of an accident through the topic of the accident. The right order will be achieved if the right term is assumed as primary, and this will be ensured if the term selected is predicable of all the others but not all they of it; since there must be one such term. Having assumed this we at once proceed in the same way with the lower terms; for our second term will be the first of the remainder, our third the first of those which follow the second in a 'contiguous' series, since when the higher term is excluded, that term of the remainder which is 'contiguous' to it will be primary, and so on. Our procedure makes it clear that no elements in the definable form have been omitted: we have taken the differentia that comes first in the order of division, pointing out that animal, e.g. is divisible exhaustively into A and B, and that the subject accepts one of the two as its predicate. Next we have taken the differentia of the whole thus reached, and shown that the whole we finally reach is not further divisible-i.e. that as soon as we have taken the last differentia to form the concrete totality, this totality admits of no division into species. For it is clear that there is no superfluous addition, since all these terms we have selected are elements in the definable form; and nothing lacking, since any omission would have to be a genus or a differentia. Now the primary term is a genus, and this term taken in conjunction with its differentiae is a genus: moreover the differentiae are all included, because there is now no further differentia; if there were, the final concrete would admit of division into species, which, we said, is not the case.
To resume our account of the right method of investigation: We must start by observing a set of similar-i.e. specifically identical-individuals, and consider what element they have in common. We must then apply the same process to another set of individuals which belong to one species and are generically but not specifically identical with the former set. When we have established what the common element is in all members of this second species, and likewise in members of further species, we should again consider whether the results established possess any identity, and persevere until we reach a single formula, since this will be the definition of the thing. But if we reach not one formula but two or more, evidently the definiendum cannot be one thing but must be more than one. I may illustrate my meaning as follows. If we were inquiring what the essential nature of pride is, we should examine instances of proud men we know of to see what, as such, they have in common; e.g. if Alcibiades was proud, or Achilles and Ajax were proud, we should find on inquiring what they all had in common, that it was intolerance of insult; it was this which drove Alcibiades to war, Achilles wrath, and Ajax to suicide. We should next examine other cases, Lysander, for example, or Socrates, and then if these have in common indifference alike to good and ill fortune, I take these two results and inquire what common element have equanimity amid the vicissitudes of life and impatience of dishonour. If they have none, there will be two genera of pride. Besides, every definition is always universal and commensurate: the physician does not prescribe what is healthy for a single eye, but for all eyes or for a determinate species of eye. It is also easier by this method to define the single species than the universal, and that is why our procedure should be from the several species to the universal genera-this for the further reason too that equivocation is less readily detected in genera than in infimae species. Indeed, perspicuity is essential in definitions, just as inferential movement is the minimum required in demonstrations; and we shall attain perspicuity if we can collect separately the definition of each species through the group of singulars which we have established e.g. the definition of similarity not unqualified but restricted to colours and to figures; the definition of acuteness, but only of sound-and so proceed to the common universal with a careful avoidance of equivocation. We may add that if dialectical disputation must not employ metaphors, clearly metaphors and metaphorical expressions are precluded in definition: otherwise dialectic would involve metaphors.