It is clear, then, that all questions are a search for a 'middle'.
Let us now state how essential nature is revealed and in what way it can be reduced to demonstration; what definition is, and what things are definable. And let us first discuss certain difficulties which these questions raise, beginning what we have to say with a point most intimately connected with our immediately preceding remarks, namely the doubt that might be felt as to whether or not it is possible to know the same thing in the same relation, both by definition and by demonstration. It might, I mean, be urged that definition is held to concern essential nature and is in every case universal and affirmative; whereas, on the other hand, some conclusions are negative and some are not universal; e.g. all in the second figure are negative, none in the third are universal. And again, not even all affirmative conclusions in the first figure are definable, e.g. 'every triangle has its angles equal to two right angles'. An argument proving this difference between demonstration and definition is that to have scientific knowledge of the demonstrable is identical with possessing a demonstration of it: hence if demonstration of such conclusions as these is possible, there clearly cannot also be definition of them. If there could, one might know such a conclusion also in virtue of its definition without possessing the demonstration of it; for there is nothing to stop our having the one without the other.
Induction too will sufficiently convince us of this difference; for never yet by defining anything-essential attribute or accident-did we get knowledge of it. Again, if to define is to acquire knowledge of a substance, at any rate such attributes are not substances.
It is evident, then, that not everything demonstrable can be defined. What then? Can everything definable be demonstrated, or not? There is one of our previous arguments which covers this too.
Of a single thing qua single there is a single scientific knowledge.
Hence, since to know the demonstrable scientifically is to possess the demonstration of it, an impossible consequence will follow:-possession of its definition without its demonstration will give knowledge of the demonstrable.
Moreover, the basic premisses of demonstrations are definitions, and it has already been shown that these will be found indemonstrable; either the basic premisses will be demonstrable and will depend on prior premisses, and the regress will be endless; or the primary truths will be indemonstrable definitions.
But if the definable and the demonstrable are not wholly the same, may they yet be partially the same? Or is that impossible, because there can be no demonstration of the definable? There can be none, because definition is of the essential nature or being of something, and all demonstrations evidently posit and assume the essential nature-mathematical demonstrations, for example, the nature of unity and the odd, and all the other sciences likewise. Moreover, every demonstration proves a predicate of a subject as attaching or as not attaching to it, but in definition one thing is not predicated of another; we do not, e.g. predicate animal of biped nor biped of animal, nor yet figure of plane-plane not being figure nor figure plane. Again, to prove essential nature is not the same as to prove the fact of a connexion. Now definition reveals essential nature, demonstration reveals that a given attribute attaches or does not attach to a given subject; but different things require different demonstrations-unless the one demonstration is related to the other as part to whole. I add this because if all triangles have been proved to possess angles equal to two right angles, then this attribute has been proved to attach to isosceles; for isosceles is a part of which all triangles constitute the whole. But in the case before us the fact and the essential nature are not so related to one another, since the one is not a part of the other.
So it emerges that not all the definable is demonstrable nor all the demonstrable definable; and we may draw the general conclusion that there is no identical object of which it is possible to possess both a definition and a demonstration. It follows obviously that definition and demonstration are neither identical nor contained either within the other: if they were, their objects would be related either as identical or as whole and part.