书城公版Darwin and Modern Science
19405100000039

第39章

I have elsewhere called attention to the many adaptations of the whale to the surrounding medium, and have pointed out--what has long been known, but is not universally admitted, even now--that in it a great number of important organs have been transformed in adaptation to the peculiar conditions of aquatic life, although the ancestors of the whale must have lived, like other hair-covered mammals, on land. I cited a number of these transformations--the fish-like form of the body, the hairlessness of the skin, the transformation of the fore-limbs to fins, the disappearance of the hind-limbs and the development of a tail fin, the layer of blubber under the skin, which affords the protection from cold necessary to a warm-blooded animal, the disappearance of the ear-muscles and the auditory passages, the displacement of the external nares to the forehead for the greater security of the breathing-hole during the brief appearance at the surface, and certain remarkable changes in the respiratory and circulatory organs which enable the animal to remain for a long time under water. Imight have added many more, for the list of adaptations in the whale to aquatic life is by no means exhausted; they are found in the histological structure and in the minutest combinations in the nervous system. For it is obvious that a tail-fin must be used in quite a different way from a tail, which serves as a fly-brush in hoofed animals, or as an aid to springing in the kangaroo or as a climbing organ; it will require quite different reflex-mechanisms and nerve-combinations in the motor centres.

I used this example in order to show how unnecessary it is to assume a special internal evolutionary power for the phylogenesis of species, for this whole order of whales is, so to speak, MADE UP OF ADAPTATIONS; it deviates in many essential respects from the usual mammalian type, and all the deviations are adaptations to aquatic life. But if precisely the most essential features of the organisation thus depend upon adaptation, what is left for a phyletic force to do, since it is these essential features of the structure it would have to determine? There are few people now who believe in a phyletic evolutionary power, which is not made up of the forces known to us--adaptation and heredity--but the conviction that EVERYpart of an organism depends upon adaptation has not yet gained a firm footing. Nevertheless, I must continue to regard this conception as the correct one, as I have long done.

I may be permitted one more example. The feather of a bird is a marvellous structure, and no one will deny that as a whole it depends upon adaptation.