书城公版Darwin and Modern Science
19405100000105

第105章

Dominant as it was, Cuvier's authority was slowly undermined by the progress of knowledge and the way was prepared for the introduction of more rational conceptions. The theory of "Catastrophism" was attacked by several geologists, most effectively by Sir Charles Lyell, who greatly amplified the principles enunciated by Hutton and Playfair in the preceding century, and inaugurated a new era in geology. Lyell's uniformitarian views of the earth's history and of the agencies which had wrought its changes, had undoubted effect in educating men's minds for the acceptance of essentially similar views regarding the organic world. In palaeontology too the doctrine of the immutability of species, though vehemently maintained and reasserted, was gradually weakening. In reviewing long series of fossils, relations were observed which pointed to genetic connections and yet were interpreted as purely ideal. Agassiz, for example, who never accepted the evolutionary theory, drew attention to facts which could be satisfactorily interpreted only in terms of that theory. Among the fossils he indicated "progressive," "synthetic,""prophetic," and "embryonic" types, and pointed out the parallelism which obtains between the geological succession of ancient animals and the ontogenetic development of recent forms. In Darwin's words: "This view accords admirably well with our theory." ("Origin of Species" (6th edition), page 310.) Of similar import were Owen's views on "generalised types" and "archetypes."The appearance of "The Origin of Species" in 1859 revolutionised all the biological sciences. From the very nature of the case, Darwin was compelled to give careful consideration to the palaeontological evidence;indeed, it was the palaeontology and modern distribution of animals in South America which first led him to reflect upon the great problem. In his own words: "I had been deeply impressed by discovering in the Pampean formation great fossil animals covered with armour like that on the existing armadillos; secondly, by the manner in which closely allied animals replace one another in proceeding southward over the Continent; and thirdly, by the South American character of most of the productions of the Galapagos archipelago, and more especially by the manner in which they differ slightly on each island of the group." ("Life and Letters of Charles Darwin", I. page 82.) In the famous tenth and eleventh chapters of the "Origin", the palaeontological evidence is examined at length and the imperfection of the geological record is strongly emphasised. The conclusion is reached, that, in view of this extreme imperfection, palaeontology could not reasonably be expected to yield complete and convincing proof of the evolutionary theory. "I look at the geological record as a history of the world imperfectly kept, and written in a changing dialect; of this history we possess the last volume alone, relating only to two or three countries. Of this volume, only here and there a short chapter has been preserved; and of each page, only here and there a few lines." ("Origin of Species", page 289.) Yet, aside from these inevitable difficulties, he concludes, that "the other great leading facts in palaeontology agree admirably with the theory of descent with modification through variation and natural selection." (Ibid. page 313.)Darwin's theory gave an entirely new significance and importance to palaeontology. Cuvier's conception of the science had been a limited, though a lofty one. "How glorious it would be if we could arrange the organised products of the universe in their chronological order!...The chronological succession of organised forms, the exact determination of those types which appeared first, the simultaneous origin of certain species and their gradual decay, would perhaps teach us as much about the mysteries of organisation as we can possibly learn through experiments with living organisms." (Zittel op. cit. page 140.) This, however, was rather the expression of a hope for the distant future than an account of what was attainable, and in practice the science remained almost purely descriptive, until Darwin gave it a new standpoint, new problems and an altogether fresh interest and charm. The revolution thus accomplished is comparable only to that produced by the Copernican astronomy.

From the first it was obvious that one of the most searching tests of the evolutionary theory would be given by the advance of palaeontological discovery. However imperfect the geological record might be, its ascertained facts would necessarily be consistent, under any reasonable interpretation, with the demands of a true theory; otherwise the theory would eventually be overwhelmed by the mass of irreconcilable data. A very great stimulus was thus given to geological investigation and to the exploration of new lands. In the last forty years, the examination of North and South America, of Africa and Asia has brought to light many chapters in the history of life, which are astonishingly full and complete.

The flood of new material continues to accumulate at such a rate that it is impossible to keep abreast of it, and the very wealth of the collections is a source of difficulty and embarrassment. In modern palaeontology phylogenetic questions and problems occupy a foremost place and, as a result of the labours of many eminent investigators in many lands, it may be said that this science has proved to be one of the most solid supports of Darwin's theory. True, there are very many unsolved problems, and the discouraged worker is often tempted to believe that the fossils raise more questions than they answer. Yet, on the other hand, the whole trend of the evidence is so strongly in favour of the evolutionary doctrine, that no other interpretation seems at all rational.