书城科普世界科普故事精华:科学之谜故事卷
17575300000022

第22章 未解篇(12)

一天,上士凯文迪和几位同伴在一条溪边饮水。凯文迪刚伸手下去,就被一株水草卷住手腕,他使劲挣扎,竟不能扯脱,便大呼同伴帮忙。一个士兵在从军前是生物系的学生,认出这种草叫“狸藻”,知道此草能捕捉水中小虫,却不知为何竟能卷住人的手腕。那士兵当即拔出刺刀,将凯文迪的手斩断。凯文迪惨叫一声,其他几人惊奇地发现,那只断掉的手,竟被一蓬狸藻卷住,几秒钟的时间,就只剩下一些淡红的血水。大家感到毛骨悚然,若不是那位学过生物的士兵当机立断,只怕凯文迪整个人都会被卷进去吃掉。

卡洛塔上尉的遭遇更可怕。他在凯文迪出事的两天后,前往附近丛林执行任务,结果遇难,连尸体也没有留下,而杀人者竟是猪笼草。这种草叶子的中脉延伸成卷须,到顶端膨大成囊状体,囊上有盖,囊面有绳子一样的窄翅,盖下有蜜腺,囊内有弱酸性的消化液,小虫吸蜜时落入,立即被消化掉。卡塔上尉在行进中,突然觉得整个身体失去了重心,被一片奇大的猪笼草吸住。他挣扎不开,向身后的同伴大喊“救命”。

帕克·诺依曼是美国陆军74团少校军官。该团遭到越南游击队的进攻,有一名上校、两名中校被俘。帕克·诺依曼少校带着27名富有战斗经验的官兵去追击。他们追了一天多,来到保安县境内的腾娄森林中,在那里,他们发现一块很大的平坦地带,上面没有丛林中常见的灌木丛、榕树及藤本植物,而是一片十分美丽的紫色草苔,如同铺着豪华的地毯。诺依曼少校下令就地休息,派出麦克·西弗等三名士兵去寻找干柴、水源。麦克·西弗等三人走出很远才发现一条溪涧,这时麦克·西弗突然对另外两个同伴说了一声“不好”,就连忙往回奔。当他们走近那片紫色草毯时,都惊呆了。帕克·诺依曼少校等24名官兵消失得无影无踪,那紫色的草毯上只剩下一些枪械刀刃。原来,他们都被这片美丽的毛毡苔吞食了。

毛毡苔是亚洲、非洲和北美洲的一种常见植物,属茅膏菜科,多年生草本,叶均基出,呈莲座状,叶柄细长,叶片近圆形,生满红紫色腺毛,分泌粘液,能捕食小虫,是着名的食虫植物。但是毛毡苔居然能一次吞掉24名美军官兵,实属一桩奇闻。

但是食虫植物吃人的真正原因,至今仍不得而知。

植物叶片运动之谜

很少有人知道植物也能像动物一样运动,只不过它们是在原地运动,表现得不像动物那样明显罢了。到目前为止,人们已经知道的能运动的植物有近千种。如梅豆的爬竿运动,葡萄、丝瓜的攀援运动,向日葵的趋光运动,苜蓿、酢浆草的睡眠运动,猪笼草、毛毡苔的捕虫运动,等等。植物中最为奇妙的“运动员”,要算是含羞草和跳舞草了。

文雅秀气的含羞草,似乎有着特殊的“运动细胞”,只要触动一下它的叶子,它就会立即把“头”低下来,先是小叶闭合,接着叶柄萎软下垂,就像一个娇羞的少女,所以,人们给它取名为“含羞草”。含羞草叶柄上长着四个羽毛状的叶子,羽毛状的叶子又由许多对生的小红叶组成。小叶柄和大叶柄的基部稍有膨大,膨大部分叫叶枕,叶枕下半部的细胞壁较厚,上半部的较薄。在正常情况下,细胞中充满了细胞液,使叶子处在正常状态。当它一受到触动,小叶叶枕上半部的细胞中水液就迅速进入细胞间隙,引起小叶闭合。大叶柄基部的叶枕正好与小叶叶枕相反,它的下半部细胞壁薄,细胞间隙较大。所以,较重的刺激又会引起大叶柄的下半部细胞失水、萎软,使整个复叶部下垂含羞。

跳舞草与大豆是近亲,属豆科植物,由三片叶子组成复叶,只是中间的叶片特别大,长圆形。两侧的小叶特别小,像两只兔子耳朵,能经常自发地进行转动。一般约1分钟转动一次。中间的大叶上下成一定角度摆动。奇妙的是,这种摇摆运动完全是在没有任何触动和刺激下自动产生的。跳舞草在荒芜寂寥的野外自寻其乐,不断地舞动着自己的叶片。到了晚上,跳舞就自动停止了。跳舞草的运动,有人认为是由植物内部的生理变化引起的。

植物叶片运动的真正原因是什么呢?这还有待于科学家的进一步研究与探讨。

植物为什么能耐寒

当严寒到来,许多动物都深居简出,或者干脆冬眠了,不少植物却依旧精神抖擞地屹然不动,难道植物真的不怕寒冷吗?当然不是。比如,当植物细胞中的水分一旦结成冰晶后,植物的许多生理活动就会无法进行。

不过要使植物体内的水分结冻,并不太容易。比如娇嫩的白菜,要在-15℃才会结冰,萝卜等可以经受-20℃而不结冰,许多常绿树木,甚至在摄氏零下四五十度还依然不会结冰,秘密何在呢?

如果说,粗大的树木可以用寒气不易侵入来解释,那么,细小的树枝和树叶、娇嫩的蔬菜何以也不易结冰呢?白菜、萝卜、香薯等遇上寒冷时,会将贮存的部分淀粉转化为糖分,植物体内的水中溶有糖后,水就不易结冰,这也确是事实。但如果我们仔细一算,就知道这并不是植物耐寒的主要理由。要知道,1千克水中溶解180克葡萄糖后,水的结冰温度才会下降1.86℃,即使这些糖溶液浓到像糖浆一样,也只能使结冰温度下降七至八度。可见这其中一定另有缘故。

原来植物体内的水分有两种,一种为普通水,还有一种叫“结合水”。所谓“结合水”,按它的化学组成而言,和普通水并无两样,只是普通水的分子排列比较凌乱,可以到处流动,而结合水的分子却以十分整齐的“队形”排列在植物组织周围,和植物组织亲密地“结合”在一起,不肯轻易分开,因此被叫做结合水。有趣的是,化学家发现结合水的“脾气”和普通水大不相同,比如普通水在100℃沸腾,摄氏零度结冰。冬天,植物体内的普通水减少了,结合水所占的比例就相对增加。由于结合水要在比摄氏零度低得多的温度才结冰,植物当然也就比较耐寒了。

树干为什么都是圆柱形的

只要你平常对周围的树木稍加注意,就会知道各类不同的树木,尽管它们的树冠、叶子、果实的形状变化多端,几乎不可能找出它们的共同形状来。有时就是在同一种类中也有很大的变异。但是几乎所有树木的树干都是圆的。树干为什么大都是圆柱形的,而不是别的形状呢?为什么形形色色的树木在这一点上能够“统一”起来呢?

圆柱形有最大的支持力。树木高大的树冠,它的重量全靠一根主干支持,有些丰产的果树结果时,树上还要挂上成百上千斤的果实,如果不是强有力的树干支持,哪能吃得消呢?

树木结果的年龄往往比较迟,有些果树,如核桃、银杏等常需要生长十多年,甚至几十年才开始结第一次果实。在这一段漫长的时间里,它们主要的任务首先是建造自己的躯体,这需要耗费大量的养分,如果不是采用消耗材料最省而功能最大的结构,就会造成浪费,使结果年龄推迟,树木本身繁衍后代的时间也拉长了,这对树木来说是不利的。

再说,圆柱形结构的树干对防止外来伤害也有许多好处。树干如果是正方形、或是长方形、或是圆以外的其他形状,那么,它们必定存在着棱角和平面。有棱角的存在是最容易被动物啃掉的,也极容易摩擦碰伤。果园中的果树,假如树干是四方的,可以想像它就容易被耕畜或其他机械损伤。我们知道,树木的皮层是树木输送营养物质的通道,皮层一旦中断,树木就要死亡。而四方茎干遇害的机会又这么多,岂不危险吗?好在树干是圆柱形的,就是机械碰伤或摩擦损伤了树皮,也只能是局部地方而已。

另外,树木是多年生植物,在它的一生中不免要遭到风暴的袭击,由于树干是圆柱形的,所以,不管任何方向吹来的大风,很容易沿着圆面的切线方向掠过,受影响的就仅一小部分了。你可以设想,如果树干是具有平面的任何其他形状,不用说,平面比之圆面上的一点受风力不是就大大增加了吗?这样,树就会被风刮歪,严重时还会使树倒毙呢!

一切生物都在进化的道路上前进着,它们驱体的特点总是朝着对环境最有适应性的方向发展,圆柱形树干可能也是对环境适应的结果。

森林树木直之谜

如果请你画一棵树,你一定会画得枝干纵横,叶子稠密,树冠团团地像个宝塔,也许还会长条拂地,迎风摇曳。

但有的树又高又直,没有纵横的枝条,只在顶上有一小段长着树枝和树叶,看上去仿佛在一根电线杆顶上扎了一把伞。例如只有云杉、红松、杉树、松树等组成的原始的纯针叶林,那么,在你眼前的,就只有一根根粗大的木柱子,非要你仰起头来,才能看到枝叶,而这些树木的枝叶,就只有小小的一簇,盘踞在高高的树顶上。

这是怎么一回事呢?是谁把它们的枝条砍得那么光光的呢?

其实谁也没有来砍过这些树的枝条,这些枝条是树木本身落掉的。

原来,树木的生长首先必须依靠阳光。哪一棵树能够在没有阳光的照射下,长久地生存下去呢?许多树木挤在一起生长时,得到阳光的机会,自然比单独生长的树木少,但是生存是一切生物的第一要求,于是树木都争先恐后地向上长,都想多得一些阳光。然而在一定面积上,阳光给予的能量是有限制的,就使得树木不得不改变它的生长状况,以适应自然环境。

在众树密处的森林里,大量的枝叶既影响通风,又得不到充足的阳光,因而不能给树身制造养料,在消耗了枝叶本身的养料以后,就自然而然地枯死了,掉落了。这种现象叫做森林的自然整枝。

于是树顶部分的枝叶,在同其他树木作了竞争以后,大家均匀地长到相差不多的高度,在那样的高处,有着充足的阳光照射,根部又源源不断地送来水分与无机盐,使它紧张地制造着整棵树所需要的养料,因此这一部分枝叶生命力强,长得很好。

一定的自然环境往往会赋予各种植物以一定的外形。森林里的树木大都长得很直,而且只有树梢一段有树枝和树叶,这也是森林的自然环境造成的,如果让它享有充分的阳光,有足够发展的空间,它就决不会是那样的了。

树木过冬之谜

大自然里有许多现象是十分引人深思的。例如,同样从地上长出来的植物,为什么有的怕冻,有的不怕冻?更奇怪的是像松柏、冬青一类树木,即使在滴水成冰的冬天里,却依然苍翠夺目,经受得住严寒的考验。

其实,不仅各式各样的植物抗冻力不同,就是同一株植物,冬天和夏天的抗冻力也不一样。北方的梨树,在-20℃~-30℃能平安越冬,可是在春天却抵挡不住微寒的袭击。松树的针叶,冬天能耐-30℃严寒,在夏天如果人为地降温到-8℃就会被冻死。

究竟是什么原因使冬天的树木特别变得抗冻呢?

原来,树木为了适应周围环境的变化,每年都用“沉睡”的妙法来对付冬季的严寒。

我们知道,树木生长要消耗养分,春夏树木生长快,养分消耗多于积累,因此抗冻力也弱。但是,到了秋天,情形就不同了,这时候白昼温度高,日照强,叶子的光合作用旺盛;而夜间气温低,树木生长缓慢,养分消耗少,积累多,于是树木越长越“胖”,嫩枝变成了木质……树木逐渐地也就有了抵御寒冷的能力。

然而,别看冬天的树木表面上呈现静止的状态,其实它的内部变化却很大。秋天积贮下来的淀粉,这时候转变为糖,有的甚至转变为脂肪,这些都是防寒物质,能保护细胞不易被冻死。如果将组织制成切片,放在显微镜下观察,还可以发现一个有趣的现象。平时一个个彼此相连的细胞,这时细胞的连接丝都断了,而且细胞壁和原生质也离开了,好像各管各一样。这个肉眼看不见的微小变化,对植物的抗冻力方面竟然起着巨大的作用。当组织结冰时,它就能避免细胞中最重要的部分——原生质不受细胞间结冰而遭致损伤的危险。

可见,树木的“沉睡”和越冬是密切相关的。冬天,树木“睡”得愈深,就愈忍得住低温,愈富于抗冻力;反之,像终年生长而不休眠的柠檬树,抗冻力就弱,即使像上海那样的气候,它也不能露天过冬。

秋树红叶之谜

人们平时总是说“绿叶红花”,仿佛叶子总是绿色的。确实,在大自然中,树叶和其他植物的叶子在绝大多数时间里几乎都是绿色的。可也有些树种,在秋天时它的树叶颜色会起变化。有名的北京一景——香山红叶,那漫山遍野的红叶真使游人们陶醉而流连忘返。江南一带的枫树到了秋天,也是一派“红枫如火”的景象。唐代大诗人杜牧的名句“霜叶红于二月花”便是对秋天红叶的赞美。

那么,叶子的红色是怎么染上去的呢?原来叶子的颜色是由它所含的色素来决定的。一般的叶子含有大量的绿色色素,我们叫它叶绿素。另外还有黄色或橙色的胡萝卜色素,也还有红色的花青素等等。

叶子的叶绿素和胡萝卜素是进行光合作用的色素。它们在阳光作用下,吸收二氧化碳和水,吐出氧气,产生淀粉,所以叶绿素是十分活跃的家伙,但它也很容易被破坏。夏天的叶子能保持绿色,是因为不断地有新的叶绿素来代替那些褪色的老叶绿素。到了秋天,天气逐渐转冷,大多数叶绿素的产生就会受到影响。叶绿素遭破坏的速度超过了它生成的速度,于是树叶的绿色逐渐褪掉,变成了黄色。那黄色就是因为胡萝卜素还留在叶子里。