书城教材教辅必懂的数学知识
10654300000052

第52章 测太阳高度

古人很早就知道,用小小直角尺(矩)可以量出相当高的高度。他们把角尺直立在水平位置上,对准要测量的物体,使物体的最高点与角尺两边上的两点成一直线,利用相似直角三角形对应边成比例的性质,就可以把物体的高度算出来了。这里的条件是:直尺的直角点到物体垂直于水平面的线的距离是能够用尺直接测量出来。

两千多年以前,汉代的天文学家又招这种方法推广到计算太阳的高度,这是古代一个十分有趣的天文问题,也是一个很有意义的数学问题。我们现在知道,太阳与地球是宇宙中两个椭圆形的天体,它们之间的平均距离有14960万公里。可是古代的人想知道太阳的高度有多少,他们又是怎样去测量的呢?

原来,那时有的天文学家,认为天是圆的(指球形),地是方的。地球是一望无际的平地,挂在天空中的太阳,尽管一年四季千变万化,但在特定的时间和地点,它的高度是可以测量计算的。于是,这些天文学家用一根八尺长的标竿(p),选定夏至这一天,在南北相隔一千里的两个地方,(A,B),分别测出太阳的影子长度(m,n)。设太阳离地面的高度为h p,A点到太阳在地面的垂足的距离为d,根据相似直角形对应边成正比例的性质,得

hp=dm(1)

hp=d ABn(2)

解方程组得

h=p×ABn-m(3)

汉代的天文学家认为,北面B点的影子n与南面A点的影长m恰恰相差1寸。因此,n-m=1寸,p=8尺,AB=1000里,代入(3)式得

h=8尺×1000公里0.1尺=80000里

将80000里再加上标竿的长度8尺,便是太阳离地面的高度(当然,这个结论是不符合实际的)。从(3)式中我们知道,h的高度等于北面影子与杆竿长之比减去南面影子与标竿长之比去除南北两点间的距离。同样,用这两个比值的差除以南面影长,便得到A点到太阳在地面的垂足的距离。因此,南北两点的距离确定以后,太阳离地面的高度主要决定于标竿影长与标竿长的两个比值之差。但是,因为他们假设地面是平的,不符合实际情况,因而得出错误的结果。然而,我国古代这种数学方法是正确的,汉代天文学家把这种计算方法称为“重差术”。公元第三世纪大数学家刘徽,系统地总结了这种办法,写成专门的一章,也是叫作“重差”,附在古代数学名著《九章算术》之后。唐代初年,国子监整理出版古代数学著作时,把这一章作为《算经十书》之一,单独发行。因为它第一个问题是测出一个海岛的高度和距离,所以又把它称为《海岛算经》,这本书一直流传到现在。