书城科普海洋馆漫游:海洋谜底解析
10540400000003

第3章

一旦大陆开始张裂,被岩石圈禁锢的软流圈物质便会沿着裂谷地带“被动”地上涌。这就是说,是岩石圈破裂引起软流圈上涌。这与前面提到的软流圈上涌导致大陆岩石圈破裂的观点正好相反。这里就有一个令人迷惑不解的问题,究竟是哪一种作用在先?或者说,是两种作用相辅相成呢?

今天,我们在研究红海、亚丁湾有可能成为未来新洋盆的时候,应当对其大陆分裂的主要动力作出具体分析。即使我们赞成软流圈上涌是大陆分裂的重要动力,那么,人们也要提出,为什么软流圈会在红海、亚丁湾而不在地球别的地方上涌?在东非大裂谷这个地方,究竟是什么力量推动软流圈物质上涌?或者说,东非大裂谷的形成和某个岩石图板块相互作用真的无关吗?假如有关系,又是哪块岩石圈在起主要作用?所以,红海、亚丁湾,或者说东非大裂谷能否真正成为未来的大洋,还有待于科学家们作进一步的研究。

海水的咸味之谜

大家都知道,海水是咸的。其原因是海水中含有各种盐分。根据科学测定,平均每1000克海水中含35克盐。地球上,海洋中蕴含大量的盐类物质。有人估计,如果把海水中所有的盐分都提取出来,铺在陆地上,可得到厚153米的盐层;如果铺在我国的国土上,可使我国平均高出海面2400米左右。

海洋刚形成时,海水和江河湖水一样,是淡的。后来,雨水不断地冲刷岩石和土壤,并把岩石和土壤中的盐类物质冲入江河,而江河的水流到大海,使海洋中的盐分不断增加。与此同时,海中水分不断蒸发(盐几乎不会蒸发),这就使盐的浓度越来越大。当然,这个过程是很漫长的。

那么,海洋是不是会越变越咸?含盐量高达25%的死海似乎肯定了这种推测。

其实不然。因为海洋也有“释放”盐分、把盐分“归还”陆地的“绝招”。具体来说,主要有以下几种方法。

当海洋中的可溶性物质(含盐类物质)浓度达到一定程度时,可溶性物质会互相结合成不溶性化合物,沉入海洋的底部。

海洋中的生物体内吸收了一定的盐类物质,当海洋生物死去后,它的尸体沉到海底。

台风暴发时,狂风巨浪会把海水卷到陆地上,海水中的盐类物质也被带到陆地。

此外,从漫长的陆地变迁历史看,有些海洋的海湾地带,由于地壳的升高而与海洋隔断。这些地带就像与大海母亲失散的“游子”,而在太阳光的“肆虐”下,变成陆地,留下大量盐分。

海水不能变咸,是不是会越变越淡呢?

这也不大可能。总的来说,海水的咸度会保持相对的平衡状态。当然,这不排除在某一个海域某一段时间,海水会变咸或变淡。

海水会不会越来越咸

海水为什么是咸的?它会不会随着时间的推移变得越来越咸?多少年来,人们一直没有一个共同的观点。

海水之所以咸,是因为海水中有3.5%左右的盐,其中大部分是氯化钠,还有少量的氯化镁、硫酸钾、碳酸钙等。正是这些盐类使海水变得又苦又涩,难以入口。那么这些盐类究竟从哪里来呢?有的科学家认为,地球在漫长的地质时期,刚开始形成的地表水(包括海水)都是淡水。后来由于水流侵蚀了地表岩石,使岩石的盐分不断地溶于水中。这些水流再汇成大河流入海中,随着水分的不断蒸发,盐分逐渐沉积,时间长了,盐类就越积越多,于是海水就变成咸的了。如果按照这种推理,那么随着时间的流逝,海水将会越来越咸。

有的科学家则另有看法。他们认为海水一开始就是咸的,是先天就形成的。根据他们测试研究发现,海水并没有越来越咸,海水中的盐分并没有增加,只是在地球各个地质的历史时期,海水中含盐分的比例不同。

还有一些科学家认为,海水所以是咸的,不仅有先天的原因,也有后来的因素。海水中的盐分不仅有大陆上的盐类不断流入到海洋中去,而且在大洋底部随着海底火山喷发,海底岩浆溢出,也会使海水盐分不断增加,这种说法得到了大多数学者的赞同。

还有一些科学家以死海为例指出,尽管海洋中的盐类会越来越多,但随着海水中可溶性盐类的不断增加,它们之间会发生化学反应而生成不可溶的化合物沉入海底,久而久之,被海底吸收,海洋中的盐度就有可能保持平衡。

总之,海水为什么是咸的,它会不会越来越咸?这还需要科学家们的不断探索和研究。

威力巨大的海洋台风

人们有时会在热带洋面上发现一种状如蘑菇的强烈气旋,其直径通常在几百千米以上,云层高度在9千米以上,这就是台风。它带来的涌浪、暴雨和风暴潮,对海上航船和海岸设施破坏极大。

台风可分为台风眼区、台风涡旋区和台风外围区。台风眼区是台风的中心部分,这是一个相对稳静、具有少云或无云天气的空心管状区,直径在10~60千米,气压极低,且稳定少变,四周被高高的云墙所环绕。这里的海面状况十分恶劣,对船舶危害极大的金字塔浪,往往出现在这里。台风涡旋区是绕台风眼周围的最大风速环形区,这里高大宽厚的云墙宽达几十千米,它的半径约100千米,在该区40米/秒~60米/秒的大风是常见的事,曾出现过100米/秒以上的强风。台风外围区是台风的边缘大风区,这个区域内的天气乱云翻滚,雨量时大时小,时降时停,风力向台风中心逐渐增大,气压降低。

1935年9月26日,日本海军第4舰队在三陆冲海面行进时突遇台风,但他们迎着狂风恶浪仍按原计划前进、当时台风中心最大风速达40米/秒,最大浪高在14米以上。舰队横穿台风,进入台风眼。结果38艘军舰遭到狂风巨浪的袭击,“初雪”号和“夕雾”号驱舰被拦腰切断,“望月”号舰桥断裂,进入危险半圆的水雷舰全部覆没,14艘5000吨以上的大型舰艇也都遭到不同程度的破坏,人员大量伤亡,损失极为惨重。

日本的中部和关东地区在1958年9月26日遭到了台风袭击。台风带来的暴雨使伊豆狩野河大堤决口,伊豆北部平原成为一片汪洋,5000人随即命丧黄泉。名古屋市和四日市等地的海岸线上洪水滔滔,5000人再次被洪水卷走。这股来自伊豆湾的台风,使人们不仅知道了台风的可怕,也尝到了海啸的滋味。

1954年的9月26日也曾刮过一场台风,那次台风从日本本土横贯而过后,又折回来袭击北海道,巨大的风浪把8000吨级的青函联运船“洞爷丸”号掀了个底朝天,1300多人葬身海底。“洞爷丸”并不是一艘普通船,而是令全体船员自豪的优质船,并且船的操纵设施也十分先进。当时,在函馆海面不仅有“洞爷丸”,还有许多青函货物联运船,这些船也在顷刻之间颠覆沉没。

1970年11月发生在孟加拉国的台风是近代最严重的台风灾害。这个在孟加拉湾强烈发展的台风,中心气压低至940百帕,最大风速达120节(62米/秒)。它于11月12日夜间到13日凌晨,在吉大港附近的哈提亚登陆,猛烈袭击了孟加拉沿海。狂风、暴雨、大海潮,吞没了无数岛屿、渔村和农庄。由于那两天正好是阴历十月十四和十五,赶上了天文大潮,加上风暴潮水,潮位最高超过6米,滔天巨浪把许多还在酣睡的人席卷吞噬。在短短的时间里,就有30多万人丧生,几千万人流离失所。整个人口稠密的恒河三角洲瞬间变成一个惨不忍睹的人间地狱。其遭受经济损失之巨大,是难以估量的。

恐怖狰狞的海冰

海水和大气相互作用形成海冰,其形成大致经历5个阶段。一是海面气温下降,表面海水温度降至冰点以下时,海水里又有利于形成冰的雪粒等凝结核,海水表面层就开始结成纵横交错的冰针或小冰片。二是海面温度继续降低,大量的冰针或冰片聚集起来,形成覆盖海面的薄冰,薄冰破裂成一个个大小相当均匀的圆盘状冰饼。三是海面温度进一步下降,圆盘状冰饼互相冻接起来,形成有一定厚度的、面积相当大的冰盖层。四是海面温度再下降,冰层膨胀龟裂,大片冰层就形成破碎的冰块。五是海水的运动,促使冰块叠加,各个冰块之间又冻接起来,形成面积更广阔的大冰原。冰原再互相撞碰,重叠,就形成山峦般起伏不平的大冰群。这时,冰厚可达15~20米。

在极地附近,冰川的一部分滑行至海洋中,断裂成一个个巨大的冰山。冰山形状奇特,千姿百态,有的宛如平台,有的陡峻尖削,有的波浪般起伏……冰山大小不一,小的面积不足1平方千米,大的面积却有几百甚至5000平方千米,海冰高出海面100多米,犹如海岛一般,但露出水面的通常只是冰山高度的1/5或1/4。在北极海域,曾有一座台状冰山,长55千米,宽30千米,露出水面的部分高达30米。在南极海域,曾有过一座巨大的冰山,长350千米,宽40千米。南极海域的冰山约有22万座,约为北极冰山数的4倍。冰山寿命很长,一般是4~11年,有些长达13年之久。在移居海洋的数年中,冰山漂移流浪,远离它的故乡。格陵兰岛附近的冰山,经加拿大东部海域向南移动。可越过北纬48度。南极冰山向北移动,可到达大西洋南纬35度、印度洋南纬45度、太平洋南纬50度。冰山漂移到温暖的水域,水线腰部日益细瘦,及至有一天支撑不住上截而翻倒下来。翻倒激起的巨浪会给过往附近海域的舰船造成巨大的威胁。

海水的破坏力是非常巨大的。首先是冰的膨胀力。淡水随温度降低而密度增大,4℃以下,随着温度下降,水的体积却要加大,这就是水的反常膨胀。小瓶中的水结冰,往往把小瓶胀裂就是这个缘故。海水也有这个反常特性,只是海水呈现最大密度的温度不是4℃,而是随海水盐度的高低而变化,一般要在-2℃以下。以这个温度为分界,气温再下降就会引起海冰的体积膨胀。此外,海冰膨胀还有一个因素,那就是海冰中的“盐泡”。在海冰形成过程中,海水中的盐大都析出来,进入未结冰的海水中,但也有少部分盐被冰包围起来,形成一个个“盐泡”。随着气温的降低,海冰中大量的“盐泡”也冻结成冰,致使冰的体积更加胀大。冰的膨胀力十分惊人,能把船体挤压得变形,使船舱破裂进水,甚至破坏港口、码头和海中的军事设施。

其次是海冰在风和海流作用下产生的推力。这是海冰破坏力的主要形式。有些海中建筑物在冻冰时倒于海中,就是海冰的巨大推力造成的。

还有就是移动的冰撞击物体时产生的冲击力。冰的质量越大,漂移的速度越快,撞击物体时产生的冲击力也越大。例如,一个厚30厘米、面积为1000平方米的冰块,若漂移速度为0.5米/秒,则撞击物体时可产生100吨的冲击力。当行驶的舰船和漂移的冰块或冰山相撞时,两者共同的撞击力就会更大,造成更严重的损失。

现代的舰船一般都装有导航和水下探测设备。但这也不能绝对保证其在冰块、冰山活动区航行的安全。

1912年4月10日,英国白星航运公司的海上“豪华宫殿”——大西洋邮轮“泰坦尼克”号,从英国南部城市南安普敦港起航,开始了横渡大西洋、直驶纽约的处女航。这是一艘排水量6.6万多吨的巨型轮船,船内设施在当时世界上是无与伦比的,英国人把它称为“永不沉没的海上皇后”,将它视为自己的骄傲。当然,第一批乘客也自感无上光荣。

4月14日午夜钟声响过不久,在纽芬兰岛东南380海里处,“泰坦尼克”号与漂浮的冰山相撞。这座冰山露出水面的部分约十七八米高,低于“泰坦尼克”号的甲板高度,但水面以下部分暗藏的冰山“底盘”却很大。坚硬的冰山,擦撞了船头水下右舷的底舱部分,虽然没有撞击破洞,但是使撞擦处的几块钢板中凹,板端铆钉崩脱而向外张开,形成了长达几百米的一道口子,占船全长的1/3,划穿了右舷前部的6个舱,前5舱都有水密舱,而第六舱偏偏没有水密舱,大量海水乘虚而入,汹涌地灌进舱内,灌满一舱又一舱。从深夜11点40分擦撞,到凌晨2点18分全船沉没,“泰坦尼克”号只在海面上支持了两个多小时。当时船上有2201人,只有711人生还。

“泰坦尼克”号撞到巨大冰山沉入大西洋底之后,其原因一直是个谜。1985年,美国深水研究专家罗伯特·巴拉尔特,在距纽芬兰东南方680千米的水下3795米处,发现了该船的残骸,他借助遥控水下摄影仪拍摄了数张照片。

1993年夏天,一个由英、美两国专家组成的探险小组对“泰坦尼克”号残骸进行了5次探测。他们采用深水机器人和小型载人潜艇,多次靠近该船残骸,打捞上许多钱币、器皿、怀表乃至船体碎块。1993年9月中旬,在纽约举行的一次美国船舶制造和机器制造专家研讨会上,有关专家学者提出了事故分析结果报告。他们的结论是:如果当时设计这艘最大、最豪华游轮的人员在制造过程中不偷工减料的话,“泰坦尼克”号的沉没或许可以避免,即使出事也不至于造成如此惨重的伤亡。专家们在会上强调指出,英国贝尔法斯特市沃尔弗造船厂的设计人员,完全按照当时造船的技术标准来铆接船体,可是“泰坦尼克”号船壳却采用了质量较差的钢材,它在低温下容易发脆和开裂。优质钢材受到撞击时只是弯曲或变形,而“泰坦尼克”号的钢质船壳在大西洋冰海中撞上冰山时,竟像玻璃那样裂开。因此,美国造船工程师弗·卡尔茨盖在研讨会上的最新研究结果的总结中说,这场惨剧可以说是难以避免的。

时隔47年,1959年1月30日,丹麦“汉斯·贺托福特”号轮船,在格陵兰岛法韦尔角东面120海里处,再次上演了一出与冰山相撞的悲剧,造成90多人丧生。轮船在与冰山相撞不久即沉没。

魔海形成之谜

为了解开马尾藻海的形成之谜,1925年美国生物学家威廉·比勃博士率领探险船“阿克乔尔”开始了对马尾藻海的科学调查。尽管“阿克乔尔”号是一艘不足500吨的木制小船,但它却可以为在马尾藻海进行探险考察提供各种服务。首先,该船设计得很独特,它的船体装着带刃的金属物,足以切开密密麻麻的果囊马尾藻。其次,船的推进器也经过了一番特殊处理,能有效地防止海草的纠缠。再次,船底还安装了锋利的玻璃片。为了能看清海中的生物,船上还安装了强光灯。

正是依靠这些独特的装置,“阿克乔尔”号才能在马尾藻海安全航行了6个月之久,进行了多学科的海洋考察,发现了许多稀有海洋生物。

以前,人们普遍认为,马尾藻海中的海草,只不过是生长在西印度群岛一带的海草,被暴风雨所席卷、漂流后滞积在马尾藻海的。比勃博士的考察表明,马尾藻海的海草是当地土生土长的独特的海洋生物。例如,一种小鱼,它的体色、模样均和果羹马尾藻相似。正是依靠这种出色的保护方法,这种鱼才达到了生存的目的。