书城科普不可思议的发现(走进科学丛书)
10506600000049

第49章 情人节里的“单身汉”

大自然真是一个和谐美妙的矛盾的统一体,有男就有女,有电子就有正电子,阴阳对立统一、雌雄对立统一,谱成了大自然动人的乐章。

每年2月14日的情人节Valentine’s Day又名圣马伦丁节,起源于古罗马。那一天,男的抽出写有女的姓名的签——爱情就这么定了。

1820年,丹麦物理学家奥斯特(1777-1851)发现了电流的磁效应,这就证明了人们此前猜测并笃信的“电磁同源”或“电磁相依”的假想。

后来,在1897年和1932年,英国物理学家J·J·汤姆逊(1856-1940)和美国物理学家安德森分别发现了电子和正电子。电子和正电子不但可以结合在一起(形成一个光子,称为γ光子),而且可以单独存在。这对“情人”是可分可合的。

既然“电磁同源”,电和磁有某些相似性,那电荷有正负之分、磁极有南北之别,不就意味着磁极也可以像电荷那样单独存在吗?

那么,磁极的“单身汉”——“磁单极子”是否的确存在呢?人们开始做实验。他们将一根具有南北极的磁棒一分为二,奇怪的是,这时不是得到两根各具有一个极的磁棒,而是得到两根各有南北两个极的磁棒!人们这时大声质问苍天:‘电磁相似’到哪里去了?自然界的对称性到哪里去了?有没有只有一个极的磁棒?“磁单极子”到哪里找寻?

自从1931年英国物理学家狄拉克(1902-1984)预言磁也应有基本“磁荷”——“磁单极子”以来,人们寻找了50来年,然而仍一无所获。不过人们却执著依旧:既然有基本电荷,必然会有基本“磁荷”,找到“磁单极子”只是时间早晚的问题。

这一天似乎终于来到了。1982年2月14日,美国斯坦福大学的布莱斯·凯布雷拉在研究宇宙射线时,利用他精心设计的一个超导线圈发现了一个游荡在宇宙空间的“磁单极子”。他还声称,平均每隔151天就能观测到一次这种“磁单极子”。他的实验原理是:在完全屏蔽外界磁场的铅圆筒中,放置低温超导线圈,平时在线圈内没有电流,当“磁单极子”进入铅筒,穿过线圈时,由于电磁感应原理,会产生感生电流。他由实验所得的数据,跟用“磁单极子”理论计算的结果符合。次年5月消息公开后,人们觉得这太有意义和有趣了。它的趣味在于2月14日正好是西方一年一度的“情人节”,在应该“成双成对”的情人节里竟发现一个“单身汉”,一时在科学界成为趣谈。

不过,这件事很快就被人们淡化了。因为凯布雷拉没有能再次观察到那次实验中的现象,换句话说,他的实验没有“可重复性”。可重复性是设计实验必须遵守的一条基本原则,因为事物规律的一个表现,就是在相同的条件下能够不断重复出现。能重复出现说明实验真实可靠,不能重复出现,说明实验可能有误。总之,他的发现不能被由他设计的实验所证实。

又过了大约3年,英国伦敦帝国学院的科学家们宣称,他们的探测器在经过1年的工作之后,在1985年3月获得了一个“磁单极子”飘过时应有的讯号。不过,他们也认为,其他物理效应也可能在该仪器中出现类似信号。因此,还要做排除这些效应的试验,方能确证有“磁单极子”。因而,这一实验也不能确证“磁单极子”的存在。

不过,这两起事件并不是仅有的似乎发现“磁单极子”的例子。早在1973年9月,美国加利福尼亚大学和休斯顿大学组成的联合科研小组在做高能宇宙线实验时,从照片中发现了一条游离度很大的径迹。经过近两年的分析研究,他们认为这就是“磁单极子”的轨迹。这一消息公布后,当时也引起了轰动,但也引起了非议。有的物理学家指出,原子序数接近96、速度为光速0.72倍的超重宇宙射线粒子也可能产生这种径迹;还有人认为,这种径迹也可能是重原子核在检测器中受到其他原子核的作用后产生的。总之,上述径迹不能证明“磁单极子”的存在。不过,这场“虚惊”也有益,它使前述凯布雷拉审慎地推迟1年多才发表其成果。

虽然这么多年没能找到这位神秘的“单身汉”,但人们却矢志不渝,从岩石中、从宇宙射线中、从加速器中去找寻。而且还把原来“磁单极子”的理论进行了更深入的探讨。

那么,人们为什么要对这位推测在宇宙初期形成的、残存数很少且游离在广袤宇宙中的“单身汉”如此“钟情”呢?这还得从头说起。

理论上预言的“磁单极子”的磁感应强度,大约是电子磁场的137倍,而质量则为质子的200(一说1015)倍,可见其磁场是很强的。举例来说,在距一个“磁单极子”1厘米处,磁场是3×10-12特斯拉,而目前探测磁场的精密度已超过10-15特斯拉(这就完全可以探测到它的磁场);两个“磁单极子”之间的作用力大约是一个电子和一个质子间引力的18 000倍!磁单极子还有一个有趣的性质,它受反磁物质排斥,与顺磁物质相吸引——这与一般磁铁并不排斥反磁物质有所不同。

如果发现“磁单极子”,这将在理论和实践中都有重大的意义。

在理论上,麦克斯韦的电磁理论将要被修改,因为他的电磁理论方程组中有一个方程是反映自然界中不存在磁单极的;电荷的量子化将得到很好的解释;人们将从新角度来审视各种守恒定律;电荷的磁荷组成的系统会出现新特性。此外,人们对太阳的两个磁极竟在一年中有几个月极性变得相同的现象,也许可以作出正确解释。

在科研中,可用“磁单极子”建造比目前的加速器能量高得多的粒子加速器。例如,估计一座周长为两米的这种加速器,其性能可能超过目前周长约900米的加速器。这显然会给粒子物理的研究带来许多好处。

在工业中,可用它造出小型、高效的电动机和发电机,而这些超小电机是人造假肢、人工智能梦寐以求的驱动设备。有人甚至设想,如果有办法控制“磁单极子”的场强和极性,人们可以利用它在地球磁场中的势能推动船舶航行,也可用它开发新的能源。

在医学上,可以用它治疗当今药物不能完全治疗或不能治疗的疾病,例如癌症。

总而言之,如果发现“磁单极子”,将会在物理基础理论的发展上,甚至在整个科学、哲学上都有重大意义和影响,也将对技术的发展产生很大的影响。