书城科普核能前景
10072500000003

第3章 放射性的发现

在探索微观世界的道路上,科学家们经过艰辛的不懈的努力,攻克了一个又一个难关,最终敲开了原子的大门。放射性的发现,可以说是奏响了人们跨入原子时代的前奏曲。

1895年11月一个寒冷的夜晚,德国匹茨堡大学的伦琴教授还在实验室里忙碌着。为了弄清阴极射线的性质,几个月来,他投入了极大的热情,夜以继日地工作。这时,他熄了灯,准备再做一次阴极射线实验。

高压电源接通了。忽然,一种奇异的现象映入了他的眼中:距阴极射线管不远的涂着铂氰化钡的屏幕上,不知什么原因竟闪出了一片黄绿色的荧光。

阴极射线管被黑纸板裹着,阴极射线是不会透射出来的,难道从阴极射线管中还能发出另一种射线,它能穿透黑纸板,映射到屏幕上吗?

伦琴试着把手挡在射线管和屏幕之间,屏幕上竟出现了一个吓人的图像——一只手的骨骼的图像!这肯定是一种新的神秘的射线,它能穿透黑纸、肌肉,但被骨骼挡住了。

这一发现使伦琴兴奋不已,他一连几个星期把自己关在实验室里,研究着这种射线的性质。当他发现这种射线还能使底片感光时,便为妻子拍下了一张手部骨骼的照片。

1895年12月28日,伦琴正式向科学界宣布了他的新发现,并在第二年初的一次学术报告会上,用这种射线当场为解剖学家克利克尔拍下了一张手的骨骼照片。伦琴的发现,震惊了世界,各地的学者、专家、新闻记者都千里迢迢地来登门求教。这种射线究竟是什么呢?是光?是带电微粒?当记者问他时,伦琴实事求是地说:“我真的不知道,它好像数学中的未知数X,我只好称它为X射线。”

X射线就这样问世了。17年以后,德国物理学家劳厄证实了X射线是一种电磁波,或者说是一种光。后来,科学家还测出了X光的波长,并把它用于医学、金属探伤、研究物质分子和结晶结构等众多领域。

伦琴发现X射线以后,世界曾掀起一股研究X射线的热潮。当时,不少人认为荧光来源于X射线。为了证实这点,法国物理学家贝克勒尔做了一个有趣的实验:他用一种晶体铀盐作为荧光物质,放在阳光下照射。然后把它拿进暗室,放在用黑纸包好的照相底片上,结果,密封的底片感光了。贝克勒尔认为,荧光中真的含有X射线。为此,他准备重复几次实验,确实验证后,再公布他的实验结果。意想不到的是,天公不做美,一连几天的阴雨天,使贝克勒尔难以完成他的实验。他懊丧地从抽屉里取出样品,把底片冲洗出来以检查纸包是否漏光,然而,一个现象使他大吃一惊:照相底片居然被感光了,而且感光影像正好是铀盐的像。荧光物质没见阳光,不会发出射线,也就是说,底片感光与荧光无关,底片的感光必定另有原因。

经过反复实验,贝克勒尔发现,只要把铀盐和照相底片放在一起,不管在多么黑暗的地方,底片都会感光。贝克勒尔断定,含铀的物质能自发地产生一种射线,这种射线是不同于X射线的新射线,它同样可使底片感光。这是科学界最早发现的放射性现象,铀也是人们发现的第一个放射性元素。

贝克勒尔发现放射性的消息公布以后,立刻引起了一对从事科学研究的年轻夫妇的注意,他们就是人们熟悉而尊敬的居里夫妇。

含铀物质为什么会放出射线?这种射线有什么性质?是否只有铀能放出射线?别的物质能不能放出其他射线呢?带着这些问题,居里夫妇花了三年多时间,从几吨沥青铀矿中分离出了比铀放射性强400倍的新元素钋。不久,他们又发现了另一种放射性化合物。9年以后,在居里去世后的第二年,居里夫人终于异常艰苦地从30吨铀沥青残渣中提炼出01克镭盐,并确定了镭的放射性比铀强200多万倍。

钋和镭的发现,不仅给科学界提供了两种用途广泛的放射性元素,而且给人们提供了一种提炼制取放射性元素的方法。居里夫妇因而也在科学史上写下了光辉的一页。

放射性物质每时每刻都在不停地向外放出射线,这些射线又是由什么构成的呢?解开这个谜的是英国物理学家卢瑟福。

卢瑟福把铀、镭之类的放射性元素放进一个铅制容器中,容器上端有个小孔。由于铅能阻挡放射线,所以只能从容器的小孔中放出一束射线。卢瑟福把一块磁力很强的磁铁放在小孔附近,于是放射线受磁铁的不同作用分成三束:一束是不受磁铁影响,穿透力较强的γ射线,一束在磁场作用下发生偏转的α射线,还有一束与α射线偏转方向相反,偏转角度最大的β射线。

α射线、β射线、γ射线都来自原子内部。原子放出α射线或β射线后,变成了另一种新的原子。原子既不是不可分的,也不是一成不变的。放射性的发现,使人们开始步入神秘的原子世界,开创了科学研究的新纪元。