书城科普能源宝库
10071800000014

第14章 太阳能的源泉

光辉灿烂的太阳,一刻不停地发射着极大的能量。太阳辐射的总额是38×1026焦耳/秒,或121×1034焦耳/年。太阳的寿命长达几十亿年,在它的“一生”中要贡献出何等浩大的能量啊!1克优质煤完全烧掉,只能放出836千焦的热。如果整个太阳是一大团煤球,它按目前的功率发射能量,那么不到1500年,太阳就烧得精光了。太阳的能量是如何产生的?这是太阳物理学的一个重大问题。

太阳能源探索经历了一个漫长的途程。曾经提出过流星学说,即大量流星坠落到太阳上,由摩擦生热而燃烧。但是计算表明,这样得到的能量太少了。这个说法很早已被扬弃。后来又有人提出收缩学说,即太阳不断在缩小,位能减少,热能增加。假定太阳本来至少有现在太阳系那样大,那么由收缩而释放能量,顶多只能维持5千万年。这比起由地质和古生物探索得出的地球年龄还小100倍。此外,用天然放射性来说明太阳能源,也以失败而告终。

一直到相对论问世后,这一难题才得到比较可靠的解决。根据相对理论,通过原子核反应,质量可能转化为能量。按照爱因斯坦的公式:能量E=mc2,m表示质量,c表示光速。由此公式不难算出,一克质量可以变成9×1013焦耳的能量,这相当于1万吨煤全部燃烧所放出的热量。既然太阳是一个拥有2×1033克质量的庞然大物,它可以算是取之难尽,用之不竭的能源了。

在什么场合下,质量才能变成为能量呢?要说明这个问题,让我们作一点历史回顾。早在1895年,法国物理学家贝克勒耳发现了铀(U)的放射性。铀矿石发出的辐射可以穿透纸张和金属片,并使照相底片感光。后来居里夫妇经过繁重的实验和辛勤的探索,发现了钋(Po)、镭(na)等放射性元素。它们在不断蜕变的过程中发射出能量和粒子流。例如镭放出。射线(即氦原子核)、射线(即电子)和射线(与X射线相似,是波长更短的辐射)。这些蜕变都是自然而然地进行的,人们既不能阻止它,也无法促进它。但到了20世纪上半期,物理学工作者实验室里用加速器等工具实现人工的核反应。通过核反应,可以使一种物质转变成另一种物质,并获得大量的能量。在一定意义上说,中世纪炼金术土梦寐以求的“点石成金”终于实现了。人类开始掌握原子核能,并建立了一整套核反应的理论。

在30年代末期,科学家才明确认识到有两种核反应可以解释太阳的能源。一种是所谓的“碳-氮循环”。它包括6个步骤,周而复始地循环进行。经过一整套六步反应,碳和氮的总量都不变,真正受到损耗的只是氢。好在太阳上氢原子多极了,足够长期维持这种核反应。还有一种是“质子—质子循环”。

仔细考虑一下可以看出,这两套循环的总效果都是使四个氢原子核合成为一个氦原子核。

而碳、氮、重氢等原子核只起触媒的作用。请注意,在这个核反应中质量是有损耗的。一个氢核的质量(原子单位)是1008,而氦核是4004,因此每次反应的质量损耗是△m=4×1008-4004=0028。由此可知,每克氢原子转化为氦时释放出能量E=0007×(3×1010)2=63×1011焦耳。于是不难算出太阳辐射的“成本账”:为了维持每秒4×1026焦耳的辐射,太阳每1秒要耗费62X1旷吨的氢核“燃料”!需要说明,我们讲的是有这样多的氢核聚变成为氦核,实际损耗的质量只是其中的一小部分,即6.2×108吨×0.007=4.3×106吨。

即便如此,每秒430万吨的代价确也不小了。但是太阳的家底极为雄厚,总质量达2×1033克,并且绝大部分是氢。因此太阳上只要有2%的氢转变为氦,”就可释放25×1043焦耳的巨额能量。这已经足以使太阳按现在的产能率维持2亿年了。下面要谈到,太阳的寿命是几十亿年。因此我们有根据说,核反应可以充分供应太阳的能源。

对太阳来说,上述两种核反应中哪一种起主要作用呢?在这个问题上,天文学家反复动摇了好几次。有时认为碳—氮循环是主要的,过些年又说质子—质子循环更要紧。总的说来,它们都在发挥作用。不过由于前一种核反应所需要的温度比后一种高,并且受温度变化的影响要大得多,一般认为太阳的能量主要是质子-质子循环供给的。顺便谈到,比太阳更亮、也就是更热的恒星基本上由碳—氮循环获得能量,而比太阳温度低的恒星,却是靠质子-质子反应“过日了”。因此就能源来说,太阳在恒星世界中也是比较适中的代表。